Aggregation of independent Paretian random variables
نویسندگان
چکیده
منابع مشابه
Pairwise Independent Random Variables
In this lecture we discuss how to derandomize algorithms. We will see a brute force algorithm (enumeration) for derandomization. We will also see that some random algorithms do not need true randomness. Specifically, we will see an example where only pairwise random bits are needed. Next, we will see how we can generate pairwise random values and how this conservation on the amount of randomnes...
متن کاملIndependent random variables
1 Last two lectures ¯ probability spaces ¯ probability measure ¯ random variables and stochastic processes ¯ distribution functions ¯ independence ¯ conditional probability ¯ memoriless property of geometric and exponential distributions ¯ expectation ¯ conditional expectation (double expectation) ¯ mean-square estimation 1
متن کاملConditionally independent random variables
In this paper we investigate the notion of conditional independence and prove several information inequalities for conditionally independent random variables. Keywords— Conditionally independent random variables, common information, rate region.
متن کاملEstimating Sums of Independent Random Variables
The paper deals with a problem proposed by Uriel Feige in 2005: if X1, . . . , Xn is a set of independent nonnegative random variables with expectations equal to 1, is it true that P ( ∑n i=1 Xi < n + 1) > 1 e ? He proved that P ( ∑n i=1Xi < n + 1) > 1 13 . In this paper we prove that infimum of the P ( ∑n i=1Xi < n + 1) can be achieved when all random variables have only two possible values, a...
متن کاملSummability of Double Independent Random Variables
We will examine double sequence to double sequence transformation of independent identically distribution random variables with respect to four-dimensional summability matrix methods. The main goal of this paper is the presentation of the following theorem. If maxk,l|am,n,k,l| maxk,l|am,kan,l| O m−γ1 O n−γ2 , γ1, γ2 > 0, then E|X̆|1 1/γ1 < ∞ and E| ̆̆ X|1 1/γ2 < ∞ imply that Ym,n → μ almost sure P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Probability
سال: 1985
ISSN: 0001-8678,1475-6064
DOI: 10.2307/1427153